

Status of the MICE Target(s)

Paul Hodgson
The University of Sheffield
On Behalf of the Target Team

The Two Target Systems

The T2 Test Rig in R78

T1 installed in ISIS

Pulse Statistics

571k pulses in ISIS (620k total)

Decision made to continue using this target during 2011

Calibration Plots

Visual inspections

7th Sept 2009

T1 Re-Commissioning

- 26-01-2011 T1 was re-commissioned
- Visual inspection
- Chiller unit in catacombs had failed
- Replaced with one from R78
- Vacuum valve opened
- Controls/Electronics tested
- Frame raised/lowered new PPS system in place
- Target operated at calibration BCD for 400 pulses
- Everything looks fine
- Ready for operation in 2011

T2.X Development History

- 2.1 DLC/DLC
 - After examining plots decided that the performance was unacceptable
 - Ended test after 1000 pulses

- 2.2 DLC/DLC
 - Ran for 80k pulses and again saw poor performance
 - Decided that DLC/DLC was not the best material combination

- 2.3 DLC/Vespel tested early 2010
 - First try with the new Vespel (polyimide) bearings
 - Ran for 2.1 million pulses then stopped for inspection
 - Too much dust produced but otherwise encouraging
 - This was caused by poor finish on one side of DLC coated shaft
 - We had used a poorly finished shaft to allow rapid test while improved shafts were in production

- T2.4 DLC/Vespel Installed Nov 2010
- Improved surface finishes on shaft and bearings
- Dust Catcher added below bottom bearing
- Ran target for ~1 million pulses
- Inspect weekly (500k)
- Using the new FPGA controller
- Digital data

Wear on one corner

Shaft appears to be rotated in bearing

Very little dust seen

Target became "stuck" several times (8) during run

- The shaft was operated for approx. 1 million pulses.
- There was very little dust production.
- What material was produced was contained within the stator and the dust catcher.
- There was very little evidence of wear on the VESPEL bearings.
- The target became "stuck" in capture position several times.
- The sticking occurred at the top of the target trajectory.
- Bearings modified to mitigate against this.

- 2.5 DLC/Vespel
- Top Bearing Modified

 \vee

800 hours of running

2.3 million pulses

Raw Data from Start Pos BCD

T2.5 – DLC/Vespel – 4.0 million pulses

Stop Time	Actuations	Description
=======		
1 - 164	490960	Inspection 1 (14/12/2010)
2 - 338	512865	Pause for Christmas, Inspection 2 (5/1/2011)
3 - 476	412043	Inspection 3 (11/01/2011)
4 - 621	414325	Inspection 4 (18/01/2011)
5 - 790	482527	Inspection 5 (26/01/2011)
6 - 1026	701662	Test Pause in running park for 1hr. (attempt reset)
7 - 1101	219747	Inspection 6 (17/02/2011)(CM29)
8 - 1214	334982	Pause, DAQ pc full
9 - 1361	436588	Final Stop (no line, end of data)

Raw Data from Min Pos BCD

Acceleration to SP1

Comparison between T2.3 and T2.5

T2.3

2.1 million pulses

T2.5

2.3 million pulses

A major improvement

Remember that stator 2 would not pass new QA

T2.6 – DLC/Vespel – 1.14 million pulses

Nominally identical to T2.5
Clearances around bearings changed
Changed inspection routine
No weekly inspections
1 hour stop every day
Several capture sticks occurred, +370 h

T2.6 Inspection

Very small amount of material visible

T2.7 – DLC/Vespel – 1.28 million pulses

Clearances increased around bearings Daily pauses as for T2.6 Again several capture sticks seen These began at 360 h

Summary of T2.X development

Target #	Design	Pulses (k)	Comment	Outcome
2.1	DLC/DLC	1	Old bearing design.	×
2.2	DLC/DLC	80	Old bearing design.	×
2.3	DLC/VESPEL	2100	New Bearings but poorly finished shaft.	*
2.4	DLC/VESPEL	1000	Improved shaft, minimal dust.	\checkmark
2.5	DLC/VESPEL	4000	Improved shaft minimal dust. Weekly inspections. Bearing cut-outs. No sticking observed.	√
2.6	DLC/VESPEL	1100	Realistic run profile, minimal dust. Some sticking observed.	✓
2.7	DLC/VESPEL	1300	Increased clearances. Sticking still occurs.	✓

ISIS schedule 2011

User run cycle	Target	Start	End	Weeks
2011/1	TS1 & TS2	10-May-11	09-Jun-11	4
2011/2	TS1 & TS2	05-Jul-11	04-Aug-11	4
2011/3	TS1 & TS2	04-Oct-11	03-Nov-11	4
2011/4	TS1 & TS2	22-Nov-11	22-Dec-11	4

In 4 weeks target would use:

- 200 k pulses. Best last year
- $-4/500 \, k$, if we ran at faster rate
- 1 million assuming maximum effort, 7 days a week etc.

Conclusion

- Have a working target in Synchrotron
- Comprehensive target development program
- New Stator design (T3) ready later in year
- Bearing test program using T2 underway
- T2.4 onwards showing minimal dust production
- Aiming for 1.5 2.0 million pulses without sticking
- May test other materials if required.